Optimization Criteria, Sensitivity and Robustness of Motion and Structure Estimation

نویسندگان

  • Jana Kosecka
  • Yi Ma
  • S. Shankar Sastry
چکیده

The prevailing efforts to study the standard formulation of motion and structure recovery have been recently focused on issues of sensitivity and and robustness of existing techniques. While many cogent observations have been made and verified experimentally, many statements do not hold in general settings and make a comparison of existing techniques difficult. With an ultimate goal of clarifying these issues we study the main aspects of the problem: the choice of objective functions, optimization techniques and the sensitivity and robustness issues in the presence of noise. We clearly reveal the relationship among different objective functions, such as “(normalized) epipolar constraints”, “reprojection error” or “triangulation”, which can all be be unified in a new “ optimal triangulation” procedure formulated as a constrained optimization problem. Regardless of various choices of the objective function, the optimization problems all inherit the same unknown parameter space, the so called “essential manifold”, making the new optimization techniques on Riemanian manifolds directly applicable. Using these analytical results we provide a clear account of sensitivity and robustness of the proposed linear and nonlinear optimization techniques and study the analytical and practical equivalence of different objective functions. The geometric characterization of critical points of a function defined on essential manifold and the simulation results clarify the difference between the effect of bas relief ambiguity and other types of local minima leading to a consistent interpretations of simulation results over large range of signal-to-noise ratio and variety of configurations. Further more we justify the choice of the linear techniques for (re)initialization and for detection of incorrect local minima.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation

In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...

متن کامل

STRUCTURAL DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION FOR PLANE STRESS PROBLEMS

This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity sign...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

A Robust Desirability-based Approach to Optimizing Multiple Correlated Responses

There are many real problems in which multiple responses should be optimized simultaneously by setting of process variables. One of the common approaches for optimization of multi-response problems is desirability function. In most real cases, there is a correlation structure between responses so ignoring the correlation may lead to mistake results. Hence, in this paper a robust approach based ...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999